# Vibration analysis of twisted plates using first order shear deformation theory 

X.X. Hu ${ }^{\text {a,* }}$, T. Sakiyama ${ }^{\text {b }}$, Y. Xiong ${ }^{\text {b }}$, H. Matsuda ${ }^{\text {b }}$, C. Morita ${ }^{\text {b }}$<br>${ }^{\text {a }}$ College of Mechanical Engineering, Zhejiang University of Technology, No. 6 District, Zhaohui Xincun, Hangzhou, Zhejiang 310032, China<br>${ }^{\mathrm{b}}$ Department of Structural Engineering, Faculty of Engineering, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan

Received 29 November 2002; accepted 27 August 2003


#### Abstract

Based on general shell theory and the first order shear deformation theory, an accurate relationship between strains and displacements of a twisted plate is derived by the Green strain tensor. An equation of equilibrium for free vibration is given by the principle of virtual work and the governing equation is solved by using the Rayleigh-Ritz method with sets of orthonormal polynomials in which only the first polynomials are defined according to the geometric boundary conditions of a plate and the others are generated by the Gram-Schmidt process. The numerical verification is carried out by comparing with previous results of cantilever plates. Vibration characteristics of cantilever twisted plates such as frequency parameters and corresponding mode shapes are obtained by the present numerical method, and the effects of the twist angle, the aspect ratio and the thickness ratio on them are studied.


(C) 2003 Elsevier Ltd. All rights reserved.

## 1. Introduction

A plate is one of the most important elements in structural mechanics and has many applications in engineering. Vibration is one of the problems in its dynamics and has attracted researchers' attention. Many studied on linear and non-linear vibration performance of plate [1-5] by the finite element method, the Galerkin method, the Rayleigh-Ritz method, and other methods have been carried out. Most of the previous work on this subject is about vibration characteristics of different plates such as rectangular, circular, elliptical and skew plates with uniform or

[^0]non-uniform thickness, and the effects of the boundary conditions and other geometric parameters on their vibration behavior.

Since 1980s the Rayleigh-Ritz method became one of the most popular and powerful approximate approach for analyzing free vibration of plates, but the choice of a set of the admissible functions is considerably important for the accuracy of the Rayleigh-Ritz method. Beam characteristic functions, degenerate beam functions, orthogonal characteristic polynomials or even simple powers of the co-ordinate parameters were often utilized successfully in combination with the Rayleigh-Ritz method for analyzing the vibration of various plates.

In order to seek an exact solution of plates with various boundary conditions, Bhat proposed a method for analyzing rectangular plates using characteristic orthogonal polynomials in the Rayleigh-Ritz method [6]. The Rayleigh-Ritz method with orthogonal polynomials was employed to study the transverse vibration of elliptic and skew plates [7,8], and to study the flexural vibration and buckling of isotropic and orthotropic rectangular plates [9]. It is highlighted that the newly developed $p b-2$ Rayleigh-Ritz method provided the versatile performance in accommodating various boundary conditions [10-12]. More recently, the studies on structural vibration by boundary characteristic orthogonal polynomials using the Rayleigh-Ritz method were reviewed [13].

There were a few studies on the vibration characteristics of twisted plates and influence of geometric parameters on them. The characteristics of twisted cantilever plates such as natural frequencies and mode shapes as well as normalized shear stress distribution were analyzed by using the finite element method and the experimental method called holographic interferometry [14]. To aid in solving the controversy over the widely different results of the free vibration frequencies of cantilever twisted plates obtained by various methods of analysis, the vibration characteristics of the plates were carried out by a joint government/industry/university research group. One of the research papers [15] provided the research results of twisted plates with 20 different geometric configurations which were obtained by the finite element method with plate elements, shell elements and solid elements, and the other methods based on the shell theory and beam theory as well as experimental methods. Based on an accurate relationship of straindisplacement of twisted plates on the thin shell theory, a method was proposed for free vibration analysis of the thin plates by the principle of virtual work in conjunction with the Rayleigh-Ritz method, in which a set of displacement functions was assumed to be general algebraic polynomials satisfying the geometric boundary conditions $[16,17]$. However, the thin shell theory employed does not ensure the accuracy of the results when the thickness of a plate is not so small as to neglect the influence of transverse shear deformation.

In this paper, the object is to comprehend the free vibration characteristics of twisted plates when the transverse shear deformation and rotary inertia are taken into account. Therefore, an accurate strain-displacement relationship of a twisted plate is derived based on general shell theory and an equation of equilibrium for free vibration is formulated by the principle of virtual work. Applying the Rayleigh-Ritz method with admissible displacement functions which are orthonormal polynomials generated by the Gram-Schmidt process, an eigenfrequency equation of the problem is presented. The vibration frequency parameters and their corresponding mode shapes of cantilever plates are achieved by the present method and the influence of the twist angle, the aspect ratio and the thickness ratio on vibration characteristics is investigated.

## 2. Mathematical formulation

A configuration of a plate with an uniform rate of twist $k$ around the $x$-axis is shown in Fig. 1, where the co-ordinates $x$ - and $y$-axes on the mid-surface of the plate have unit vectors $\mathbf{i}_{1}$ and $\mathbf{i}_{2}$, respectively. The unit vector perpendicular to the mid-surface is denoted by $\mathbf{i}_{3}$ chosen so that $\mathbf{i}_{1}, \mathbf{i}_{2}$ and $\mathbf{i}_{3}$ form a right-handed orthogonal co-ordinate system. The $z$-axis is normal to the midsurface. The length, the width and the thickness of the plate are represented by $a, b$ and $t$, respectively. $K$ denotes a twist angle at an end of the plate.

### 2.1. Strain-displacement relationship

Assuming a local co-ordinates from a point on the mid-surface, $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$ are the vectors in their directions and the unit vector $\mathbf{a}_{3}$ is introduced, which is defined as the following [16]:

$$
\begin{equation*}
\mathbf{a}_{1}=\mathbf{i}_{1}+k y \mathbf{i}_{3}, \quad \mathbf{a}_{2}=\mathbf{i}_{2}, \quad \mathbf{a}_{3}=\frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\left|\mathbf{a}_{1} \times \mathbf{a}_{2}\right|}=-\frac{k y}{\sqrt{g}} \mathbf{i}_{1}+\frac{1}{\sqrt{g}} \mathbf{i}_{3}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
g=1+k^{2} y^{2} . \tag{2}
\end{equation*}
$$

The configuration of the twisted plate before and after deformation can be given by the position vectors, respectively,

$$
\begin{equation*}
\mathbf{r}^{(0)}=\left(x-\frac{k y z}{\sqrt{g}}\right) \mathbf{i}_{1}+y \mathbf{i}_{2}+\frac{z}{\sqrt{g}} \mathbf{i}_{3}, \mathbf{r}=\mathbf{r}^{(0)}+\mathbf{U} \tag{3}
\end{equation*}
$$

where $\mathbf{U}$ is a displacement vector having components $\mathscr{U}, \mathscr{V}$ and $\mathscr{W}$ in $\mathbf{a}_{1}, \mathbf{a}_{2}$ and $\mathbf{a}_{3}$, respectively.
According to the Green strain tensor, the suitable strain with respect to $(x, y, z)$ is defined as

$$
\begin{equation*}
2 f_{i j}=\frac{\partial \mathbf{r}}{\partial \alpha^{i}} \cdot \frac{\partial \mathbf{r}}{\partial \alpha^{j}}-\frac{\partial \mathbf{r}^{(0)}}{\partial \alpha^{i}} \cdot \frac{\partial \mathbf{r}^{(0)}}{\partial \alpha^{j}}\left(i, j=1,2,3 ; \alpha^{1}=x, \alpha^{2}=y, \alpha^{3}=z\right) \tag{4}
\end{equation*}
$$

In order to achieve the engineering strains of the twisted plate, a local rectangular Cartesian coordinate system $(\xi, \eta, \zeta)$ with a set of unit vectors $\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \mathbf{j}_{3}\right)$ is introduced by

$$
\begin{equation*}
\mathbf{j}_{1}=\frac{\mathbf{a}_{1}}{\left|\mathbf{a}_{1}\right|}, \quad \mathbf{j}_{2}=\frac{\mathbf{a}_{2}}{\left|\mathbf{a}_{2}\right|}, \quad \mathbf{j}_{3}=\mathbf{a}_{3} \tag{5}
\end{equation*}
$$



Fig. 1. Geometry and co-ordinates of a twisted plate.

After the transformation, the following strains are obtained:

$$
\begin{align*}
& \varepsilon_{\xi \xi}=\frac{1}{F}\left(\sqrt{g} \frac{\partial \mathscr{U}}{\partial x}+z k \frac{\partial \mathscr{U}}{\partial y}+z \frac{k^{3} y}{g} \mathscr{U}+\frac{k^{2} y}{\sqrt{g}} \mathscr{V}-z \frac{k^{2}}{g \sqrt{g}} \mathscr{W}\right), \\
& \varepsilon_{\eta \eta}=\frac{1}{F}\left(-z \frac{k^{3} y}{g} \mathscr{U}+z \frac{k}{g} \frac{\partial \mathscr{V}}{\partial x}+\sqrt{g} \frac{\partial \mathscr{V}}{\partial y}-z \frac{k^{2}}{g \sqrt{g}} \mathscr{W}\right), \quad \varepsilon_{\zeta \zeta}=\frac{\partial \mathscr{W}}{\partial z}, \\
& \gamma_{\xi \eta}=\frac{1}{F}\left(z \frac{k}{\sqrt{g}}+g \frac{\partial \mathscr{U}}{\partial y}+\frac{\partial \mathscr{V}}{\partial x}+z \frac{k}{\sqrt{g}} \frac{\partial \mathscr{V}}{\partial y}+z \frac{k^{3} y}{g \sqrt{g}} \mathscr{V}-\frac{2 k}{\sqrt{g}} \mathscr{W}\right), \\
& \gamma_{\xi \zeta}=\frac{1}{F}\left(F \sqrt{g} \frac{\partial \mathscr{U}}{\partial z}+z \frac{k^{2}}{g} \mathscr{U}+\frac{k}{\sqrt{g}} \mathscr{V}+\frac{\partial \mathscr{W}}{\partial x}+z \frac{k}{\sqrt{g}} \frac{\partial \mathscr{W}}{\partial y}\right) \\
& \gamma_{\eta \zeta}=\frac{1}{F}\left(k \mathscr{U}+F \frac{\partial \mathscr{V}}{\partial z}+z \frac{k^{2}}{g \sqrt{g}} \mathscr{V}+z \frac{k}{g} \frac{\partial \mathscr{W}}{\partial x}+\sqrt{g} \frac{\partial \mathscr{W}}{\partial y}\right), \tag{6}
\end{align*}
$$

where $F=\sqrt{g}\left(1-z^{2} k^{2} / g^{2}\right)$.
To the small displacement theory of a plate, the most natural and simple expression to include the influence of transverse shear deformation is to assume that

$$
\begin{equation*}
\mathscr{U}=u+z u_{1}, \quad \mathscr{V}=v+z v_{1}, \quad \mathscr{W}=w, \tag{7}
\end{equation*}
$$

where $u, v$ and $w$ denote the linear displacements of a point on the mid-surface, and $u_{1}$ and $v_{1}$ are angular displacements of the cross-section perpendicular to the mid-surface in the $x$ and $y$ directions, respectively. Applying Eq. (7) and introducing the following non-dimensional indices,

$$
\begin{equation*}
U=\frac{u}{a}, \quad V=\frac{v}{a}, \quad W=\frac{w}{a}, \quad U_{1}=u_{1}, \quad V_{1}=v_{1}, \quad X=\frac{x}{a}, \quad Y=\frac{y}{b}, \quad K=k a . \tag{8}
\end{equation*}
$$

Eq. (6) can be rewritten as the matrix form, or

$$
\begin{equation*}
\left\{\varepsilon_{\xi \xi} \varepsilon_{\eta \eta} \gamma_{\xi \eta} \gamma_{\xi \zeta} \gamma_{\eta \xi}\right\}^{\mathrm{T}}=\frac{1}{F}\left(\mathscr{Z}_{1} \mathscr{G}^{(1)} \mathscr{R}_{1}+\mathscr{Z}_{2} \mathscr{G}^{(2)} \mathscr{R}_{2}\right) \tag{9}
\end{equation*}
$$

where the relevant quantities are defined by

$$
\mathscr{X}_{1}=\left[\begin{array}{cccccccccc}
1 & \frac{z}{a} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{z}{a} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{z}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{z}{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{z}{a}
\end{array}\right], \quad \mathscr{Z}_{2}=\left[\begin{array}{cccccccccc}
\frac{z}{a} & \frac{z^{2}}{a^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{z}{a} & \frac{z^{2}}{a^{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{z}{a} & \frac{z^{2}}{a^{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{z}{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{z}{a}
\end{array}\right],
$$

$$
\begin{gather*}
\mathscr{R}_{1}^{\mathrm{T}}=\left\{\begin{array}{llllllll}
\frac{\partial U}{\partial X} & \frac{\partial U}{\partial Y} & U & \frac{\partial V}{\partial X} & \frac{\partial V}{\partial Y} & V & \frac{\partial W}{\partial X} & \frac{\partial W}{\partial Y} \\
\mathscr{R}_{2}^{\mathrm{T}}=\left\{\begin{array}{llllll}
\frac{\partial U_{1}}{\partial X} & \frac{\partial U_{1}}{\partial Y} & U_{1} & \frac{\partial V_{1}}{\partial X} & \frac{\partial V_{1}}{\partial Y} & V_{1}
\end{array}\right\}
\end{array},\right.
\end{gather*}
$$

and the matrices $\mathscr{G}^{(1)}$ and $\mathscr{G}^{(2)}$ are given in Appendix A.
The constitutive relationship between strains and stresses for the homogeneous plates can be written as

$$
\sigma=\left\{\begin{array}{c}
\sigma_{\xi \xi}  \tag{11}\\
\sigma_{\eta \eta} \\
\tau_{\xi \eta} \\
\tau_{\xi \zeta} \\
\tau_{\eta \zeta}
\end{array}\right\}=\left[\begin{array}{ccccc}
\frac{E}{1-v^{2}} & \frac{v E}{1-v^{2}} & 0 & 0 & 0 \\
\frac{v E}{1-v^{2}} & \frac{E}{1-v^{2}} & 0 & 0 & 0 \\
0 & 0 & G & 0 & 0 \\
0 & 0 & 0 & \beta G & 0 \\
0 & 0 & 0 & 0 & \beta G
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{\xi \xi} \\
\varepsilon_{\eta \eta} \\
\gamma_{\xi \eta} \\
\gamma_{\xi \zeta} \\
\gamma_{\eta \zeta}
\end{array}\right\}=\mathscr{D} \varepsilon,
$$

where $E, v$ and $G$ are Young's modulus, the Poisson ratio and shear modulus, respectively, and $\beta$ is a shear correction factor.

### 2.2. Governing equation of vibration

The equation of equilibrium for free vibration is shown as the following by the principle of virtual work,

$$
\begin{equation*}
\delta \Pi=\iiint_{v o l} \varepsilon^{\mathrm{T}} \delta \sigma \mathrm{~d} V_{o l}-\iiint_{v o l} \rho \omega^{2} \mathbf{U} \delta \mathbf{U} \mathrm{~d} V_{o l}, \tag{12}
\end{equation*}
$$

where $\omega$ denotes an angular frequency of vibration and $\rho$ is a density of a material.
Substituting the related quantities into Eq. (12), multiplying $a^{2} / D$ and integrating with respect to $z$ yields

$$
\begin{align*}
\delta \Pi= & \iint_{A}\left\{\mathscr{R}_{1}^{\mathrm{T}} \mathscr{R}_{2}^{\mathrm{T}}\right\}\left[\begin{array}{cc}
\left\{\mathscr{G}^{(1)}\right\}^{\mathrm{T}} \mathscr{D}^{(1)} \mathscr{G}^{(1)} & \left\{\mathscr{G}^{(1)}\right\}^{\mathrm{T}} \mathscr{D}^{(2)} \mathscr{G}^{(2)} \\
\left\{\mathscr{G}^{(2)}\right\}^{\mathrm{T}}\left\{\mathscr{D}^{(2)}\right\}^{\mathrm{T}} \mathscr{G}^{(1)} & \left\{\mathscr{G}^{(2)}\right\}^{\mathrm{T}} \mathscr{D}^{(3)} \mathscr{G}^{(2)}
\end{array}\right]\left\{\begin{array}{l}
\delta \mathscr{R}_{1}^{\mathrm{T}} \\
\delta \mathscr{R}_{2}^{\mathrm{T}}
\end{array}\right\} \mathrm{d} X \mathrm{~d} Y \\
& -\lambda^{2} \iint_{A}\left\{U V W U_{1} V_{1}\right\} \mathscr{B}\left\{\delta U \delta V \delta W \delta U_{1} \delta V_{1}\right\}^{\mathrm{T}} \mathrm{~d} X \mathrm{~d} Y, \tag{13}
\end{align*}
$$

in which the matrices $\mathscr{D}^{(1)}, \mathscr{D}^{(2)}, \mathscr{D}^{(3)}$ and $\mathscr{B}$ are defined by

$$
\begin{gather*}
\mathscr{D}^{(1)}=\int_{-t / 2}^{t / 2} \frac{1}{F} \frac{a^{2}}{D} \mathscr{Z}_{1}^{\mathrm{T}} \mathscr{D} \mathscr{L}_{1} \mathrm{~d} z, \quad \mathscr{D}^{(2)}=\int_{-t / 2}^{t / 2} \frac{1}{F} \frac{a^{2}}{D} \mathscr{L}_{2}^{\mathrm{T}} \mathscr{D} \mathscr{Z}_{1} \mathrm{~d} z, \quad \mathscr{D}^{(3)}=\int_{-t / 2}^{t / 2} \frac{1}{F} \frac{a^{2}}{D} \mathscr{X}_{2}^{\mathrm{T}} \mathscr{D}_{\mathscr{Z}}^{2} \\
\mathrm{~d} z,  \tag{14}\\
\mathscr{B}=\operatorname{diag}\left\{B_{11} B_{22} \cdots B_{55}\right\}=\operatorname{diag}\left\{\begin{array}{lllll}
g \sqrt{g} & \sqrt{g} & \sqrt{g} & \frac{g \sqrt{g} t^{2}}{12 a^{2}} & \frac{\sqrt{g} t^{2}}{12 a^{2}}
\end{array}\right\}
\end{gather*}
$$

and $\lambda$ is a frequency parameter given as

$$
\begin{equation*}
\lambda^{2}=\frac{\rho \omega^{2} t a^{4}}{D}, \quad D=\frac{E t^{3}}{12\left(1-v^{2}\right)} \tag{15}
\end{equation*}
$$

Considering a set of characteristic orthonormal polynomials in the Rayleigh-Ritz method, the three linear displacement functions $U, V$ and $W$, and the two angular displacement functions $U_{1}$ and $V_{1}$ are defined as follows:

$$
\begin{gather*}
U=\sum_{i=1}^{N_{U}} \sum_{j=1}^{M_{U}} a_{i j}^{U} \Phi_{i}^{U}(X) \Psi_{j}^{U}(Y), \quad V=\sum_{k=1}^{N_{V}} \sum_{l=1}^{M_{V}} a_{k l}^{V} \Phi_{k}^{V}(X) \Psi_{l}^{V}(Y), \\
W=\sum_{m=1}^{N_{W}} \sum_{n=1}^{M_{W}} a_{m n}^{W} \Phi_{m}^{W}(X) \Psi_{n}^{W}(Y), \\
U_{1}=\sum_{p=1}^{N_{U_{1}}} \sum_{q=1}^{M_{U_{1}}} a_{p q}^{U_{1}} \Phi_{p}^{U_{1}}(X) \Psi_{q}^{U_{1}}(Y), \quad V_{1}=\sum_{r=1}^{N_{V_{1}}} \sum_{s=1}^{M_{V_{1}}} a_{r s}^{V_{1}} \Phi_{r}^{V_{1}}(X) \Psi_{s}^{V_{1}}(Y), \tag{16}
\end{gather*}
$$

where $a_{P Q}^{S}\left(S=U, V, W, U_{1}, V_{1} ; P, Q=1,2,3, \ldots\right)$ are unknown coefficients, and $\Phi_{P}^{S}(X)$ and $\Psi_{Q}^{S}(Y)$ are polynomials generated by the Gram-Schmidt process. For example, the first polynomial $\Phi_{1}(X)$ is given so that it satisfies a geometric boundary conditions of the plate, and a set of orthogonal polynomials within $\left[X_{1}, X_{2}\right]$ can be obtained by the following recursive algorithm,

$$
\begin{gather*}
\Phi_{2}(X)=\left(X-B_{2}\right) \Phi_{1}(X), \quad \Phi_{P}(X)=\left(X-B_{P}\right) \Phi_{P-1}(X)-C_{P} \Phi_{P-2}(X) \quad(P=3,4,5, \ldots), \\
B_{P}=\int_{X_{1}}^{X_{2}} \Gamma_{X} \Phi_{P-1}^{2}(X) X \mathrm{~d} X / \int_{X_{1}}^{X_{2}} \Gamma_{X} \Phi_{P-1}^{2}(X) \mathrm{d} X \\
C_{P}=\int_{X_{1}}^{X_{2}} \Gamma_{X} \Phi_{P-1}(X) \Phi_{P-2}(X) X \mathrm{~d} X / \int_{X_{1}}^{X_{2}} \Gamma_{X} \Phi_{P-2}^{2}(X) \mathrm{d} X, \tag{17}
\end{gather*}
$$

where $\Gamma_{X}$ is a weighting function and the polynomial $\Phi_{P}(X)$ satisfies the orthogonal condition

$$
\int_{X_{1}}^{X_{2}} \Gamma_{X} \Phi_{P}(X) \Phi_{Q}(X) \mathrm{d} X= \begin{cases}0 & \text { if } P \neq Q  \tag{18}\\ \delta_{P Q} & \text { if } P=Q\end{cases}
$$

If the unit weighting function $\Gamma_{X}$ is used and the coefficients of the orthogonal polynomials are redefined by

$$
\begin{equation*}
\int_{X_{1}}^{X_{2}} \Phi_{P}^{2}(X) \mathrm{d} X=1 \tag{19}
\end{equation*}
$$

then a set of orthonormal polynomials $\Phi_{P}(X)(P=1,2,3, \ldots)$ is achieved.
Substituting Eq. (16) into Eq. (13) and considering the following requirement due to the independent orthonormal polynomials:

$$
\begin{equation*}
\frac{\partial}{\partial a_{P Q}^{S}} \delta \Pi=0\left(S=U, V, W, U_{1}, V_{1} ; P, Q=1,2,3, \ldots\right) \tag{20}
\end{equation*}
$$

a set of simultaneous linear algebraic equations for free vibration of the twisted plate is obtained as follows:

$$
\left\{\left[\begin{array}{cccc}
\mathbf{K}^{(11)} & \mathbf{K}^{(12)} & \cdots & \mathbf{K}^{(15)}  \tag{21}\\
& \mathbf{K}^{(22)} & \cdots & \mathbf{K}^{(25)} \\
& & \ddots & \vdots \\
\text { Sym } & & & \mathbf{K}^{(55)}
\end{array}\right]-\lambda^{2}\left[\begin{array}{cccc}
\mathbf{M}^{(11)} & & & \mathbf{0} \\
& \mathbf{M}^{(22)} & & \\
& & \ddots & \\
\mathbf{0} & & & \mathbf{M}^{(55)}
\end{array}\right]\right\}\left\{\begin{array}{c}
\mathbf{a}^{U} \\
\mathbf{a}^{V} \\
\mathbf{a}^{W} \\
\mathbf{a}^{U_{1}} \\
\mathbf{a}^{V_{1}}
\end{array}\right\}=\{\mathbf{0}\}
$$

where the elements in the sub-stiffness matrices $\mathbf{K}^{(i j)}$ and the sub-mass matrices $\mathbf{M}^{(i i)}$ are

$$
\left.\begin{array}{rl}
K_{p q}^{(i j)}= & \iint_{A}\left\{\frac{\partial \Phi_{m}^{i}(X)}{\partial X} \Psi_{n}^{i}(Y) \quad \Phi_{m}^{i}(X) \frac{\partial \Psi_{n}^{i}(Y)}{\partial Y} \quad \Phi_{m}^{i}(X) \Psi_{n}^{i}(Y)\right.
\end{array}\right\} \mathscr{P}^{(i j)}, \begin{aligned}
& \cdot\left\{\frac{\partial \Phi_{r}^{j}(X)}{\partial X} \Psi_{s}^{j}(Y) \quad \Phi_{r}^{j}(X) \frac{\partial \Psi_{s}^{j}(Y)}{\partial Y} \quad \Phi_{r}^{j}(X) \Psi_{s}^{j}(Y)\right\}^{\mathrm{T}} \mathrm{~d} X \mathrm{~d} Y \\
M_{p q}^{(i i)}= & \iint_{A} B_{i i} \Phi_{m}^{i}(X) \Psi_{n}^{i}(Y) \Phi_{r}^{i}(X) \Psi_{s}^{i}(Y) \mathrm{d} X \mathrm{~d} Y \\
(i, j= & 1,2, \ldots, 5 ; \quad p, q=1,2,3, \ldots ; \quad m, n, r, s=1,2,3, \ldots)
\end{aligned}
$$

The superscripts $i$ and $j$ denote the different displacement functions, or their values from 1 to 5 are corresponding to $U, V, W, U_{1}$ and $V_{1}$, respectively, and

$$
\left[\begin{array}{ccccc}
\mathscr{Q}^{(11)} & \mathscr{Q}^{(12)} & \ldots & & \mathscr{Q}^{(15)}  \tag{23}\\
& \mathscr{Q}^{(22)} & \ldots & & \mathscr{Q}^{(25)} \\
& & & \ddots & \vdots \\
\text { Sym } & & & & \mathscr{Q}^{(55)}
\end{array}\right]=\left[\begin{array}{cc}
\left\{\mathscr{G}^{(1)}\right\}^{\mathrm{T}} \mathscr{D}^{(1)} \mathscr{G}^{(1)} & \left\{\mathscr{G}^{(1)}\right\}^{\mathrm{T}} \mathscr{D}^{(2)} \mathscr{G}^{(2)} \\
\left\{\mathscr{G}^{(2)}\right\}^{\mathrm{T}}\left\{\mathscr{D}^{(2)}\right\}^{\mathrm{T}} \mathscr{G}^{(1)} & \left\{\mathscr{G}^{(2)}\right\}^{\mathrm{T}} \mathscr{D}^{(3)} \mathscr{G}^{(2)}
\end{array}\right] .
$$

For the non-trivial solutions of Eq. (21), a governing equation can be obtained, namely:

$$
\begin{equation*}
\left|\mathbf{K}-\lambda^{2} \mathbf{M}\right|=\mathbf{0} \tag{24}
\end{equation*}
$$

and the eigenvalues and eigenvectors can be solved from the equation easily.

## 3. Convergence and comparison

Cantilever twisted plates, which have a fixed edge and three free others, are considered as an example of numerical analysis in this paper, and the unit weighting functions $\Gamma_{X}$ and $\Gamma_{Y}$ are used, that is to say that the first polynomials with respect to $X$ and $Y$ for the five displacement functions can be defined by

$$
\begin{align*}
& \Phi_{1}^{U}(X)=\Phi_{1}^{V}(X)=\Phi_{1}^{W}(X)=\Phi_{1}^{U_{1}}(X)=\Phi_{1}^{V_{1}}(X)=\sqrt{3} X \quad(X \in[0,1]) \\
& \Psi_{1}^{U}(Y)=\Psi_{1}^{V}(Y)=\Psi_{1}^{W}(Y)=\Psi_{1}^{U_{1}}(Y)=\Psi_{1}^{V_{1}}(Y)=1 \quad(Y \in[-1 / 2,1 / 2]) \tag{25}
\end{align*}
$$

The free vibration of twisted plates is represented by a governing equation (24) where the Rayleigh-Ritz method with orthonormal polynomials and the Gauss-Legendre numerical integration are utilized. The number of terms of orthonormal polynomials in each of the
admissible displacement functions and the number of integration points affect not only the accuracy of results but also the efficiency of calculation. The convergence and the accuracy are improved with more terms of orthonormal polynomials and more points of Gauss-Legendre integration, but too many calculations might cause numerical errors. From experience it was known that a 12-point Gauss-Legendre numerical integration would yield better results. In the following, the effect of the number of terms in the displacement functions on frequency parameters is investigated and then the proper numbers are determined. Poisson's ratio $v$ is assumed to be 0.3 and the shear correction factor $\beta$ is $\pi^{2} / 12$.

### 3.1. Convergence study on frequency parameters

There are five displacement functions, each of which is constructed by two independent sets of orthonormal polynomials with respect to $X$ and $Y$, respectively. For any displacement function, there are no restrictions on the choice of terms in the two sets of orthonormal polynomials $\{\Phi(X)\}$ and $\{\Psi(X)\}$. There are no coupling terms among the five displacement functions too. From Eq. (16), it is known that Eq. (21) is a set of $N_{U} \times M_{U}+N_{V} \times M_{V}+N_{W} \times M_{W}+N_{U_{1}} \times M_{U_{1}}+$ $N_{V_{1}} \times M_{V_{1}}$ simultaneous linear algebraic equations. For the convenience, the following relationships are defined

$$
\begin{gather*}
N_{U}=M_{U}-1=N_{V}=M_{V}-1=N_{W}=M_{W}-1=N_{1} \\
N_{U_{1}}=M_{U_{1}}-1=N_{V_{1}}=M_{V_{1}}-1=N_{2} . \tag{26}
\end{gather*}
$$

Table 1
Convergence study on $\lambda\left(\omega a^{2} \sqrt{\rho t / D}\right)$ for plates with $a / b=1.0$ and $t / b=0.01$

|  | $N_{1}, N_{2}$ | 7,9 | 7,11 | 9,7 | 11,7 | 8,8 | 9,9 | 10,10 | 11,11 |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K$ | Terms |  | $56 / 90$ | $56 / 132$ | $90 / 56$ | $132 / 56$ | $72 / 72$ | $90 / 90$ | $110 / 110$ | $132 / 132$ |
| $30^{\circ}$ | $\lambda_{i}$ | 1 | 3.4142 | 3.4140 | 3.4140 | 3.4138 | 3.4133 | 3.4130 | 3.4126 | 3.4126 |
|  |  | 2 | 19.159 | 19.158 | 19.157 | 19.156 | 19.155 | 19.154 | 19.152 | 19.151 |
|  |  | 3 | 49.420 | 49.416 | 49.389 | 49.387 | 49.389 | 49.378 | 49.376 | 49.372 |
|  |  | 4 | 50.160 | 50.155 | 50.074 | 50.072 | 50.075 | 50.069 | 50.063 | 50.062 |
|  |  | 5 | 57.915 | 57.912 | 57.786 | 57.784 | 57.782 | 57.765 | 57.758 | 57.757 |
|  |  | 6 | 75.967 | 75.949 | 75.873 | 75.872 | 75.859 | 75.820 | 75.813 | 75.803 |
|  |  | 7 | 94.305 | 94.293 | 94.238 | 94.234 | 94.238 | 94.193 | 94.187 | 94.176 |
|  |  | 8 | 106.13 | 106.08 | 105.75 | 105.75 | 105.70 | 105.65 | 105.60 | 105.60 |
|  |  | 9 | 111.22 | 111.19 | 111.12 | 111.11 | 111.08 | 110.96 | 110.95 | 110.93 |
|  |  | 10 | 120.60 | 120.47 | 114.55 | 114.55 | 114.82 | 114.47 | 114.29 | 114.28 |
| $60^{\circ}$ | $\lambda_{i}$ | 1 | 3.2462 | 3.2460 | 3.2458 | 3.2457 | 3.2450 | 3.2446 | 3.2443 | 3.2442 |
|  |  | 2 | 14.631 | 14.630 | 14.629 | 14.629 | 14.627 | 14.626 | 14.624 | 14.624 |
|  |  | 3 | 49.018 | 49.015 | 48.715 | 48.714 | 48.712 | 48.697 | 48.691 | 48.691 |
|  |  | 4 | 66.135 | 66.126 | 65.967 | 65.963 | 65.961 | 65.877 | 65.869 | 65.862 |
|  |  | 5 | 74.004 | 73.984 | 73.374 | 73.367 | 73.513 | 73.265 | 73.253 | 73.248 |
|  |  | 6 | 106.54 | 106.44 | 101.22 | 101.22 | 102.15 | 101.14 | 100.99 | 100.98 |
|  |  | 7 | 108.60 | 108.57 | 108.25 | 108.25 | 108.23 | 107.96 | 107.90 | 107.88 |
|  |  | 8 | 140.21 | 140.17 | 139.63 | 139.62 | 139.59 | 138.99 | 138.90 | 138.85 |
|  |  | 9 | 145.21 | 145.14 | 144.60 | 144.59 | 144.60 | 144.30 | 144.01 | 143.97 |
|  |  | 10 | 152.46 | 152.32 | 147.73 | 147.71 | 148.81 | 146.70 | 146.56 | 146.50 |

Cantilever plates with two twist angles $K=30^{\circ}$ and $60^{\circ}$, an aspect ratio $a / b=1.0$ and a thickness ratio $t / b=0.01$ are selected and the numerical results are shown in Table 1 by using the present method for several combinations of the number of terms $\left(N_{1}, N_{2}\right)$. It is observed that the frequency parameters of the plate with small twist angle converge better than those with large twist angle, and the lower frequency parameters converge faster than the higher ones. As the $\left(N_{1}, N_{2}\right)$ is taken to be $(9,9),(10,10)$ and $(11,11)$, the maximum deviation in the higher frequency parameters is less than $0.3 \%$. Considering the efficiency of calculation $(9,9)$ is utilized in the following analyses.

### 3.2. Comparison with previous methods

Firstly, the plates with CFFF boundary condition on the Mindlin plate theory [12] is considered which have aspect ratios $a / b=0.4,1.0$ and 1.5 , and thickness ratios $t / b=0.001,0.050$ and 0.100. The first eight frequency parameters $\lambda=\left(\omega b^{2} / \pi^{2}\right) \sqrt{\rho t / D}$ obtained by the two methods

Table 2
Comparison of $\lambda\left(\omega b^{2} / \pi^{2} \sqrt{\rho t / D}\right)$ for plates with $K=0^{\circ}$ [5]

| $a / b$ | $t / b$ | Method | No. of vibration mode |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 0.4 | 0.001 | Liew | 2.215 | 3.019 | 5.108 | 8.741 | 13.628 | 14.593 | 14.925 | 18.192 |
|  |  | Present | 2.2150 | 3.0197 | 5.1101 | 8.7424 | 13.635 | 14.613 | 14.928 | 18.201 |
|  | 0.050 | Liew | 2.182 | 2.914 | 4.839 | 8.191 | 12.517 | 13.443 | 13.557 | 16.224 |
|  |  | Present | 2.1824 | 2.9147 | 4.8459 | 8.1978 | 12.526 | 13.464 | 13.561 | 16.240 |
|  | 0.100 | Liew | 2.099 | 2.727 | 4.387 | 7.253 | 10.399 | 11.130 | 11.424 | 13.148 |
|  |  | Present | 2.0995 | 2.7271 | 4.3882 | 7.2537 | 10.400 | 11.132 | 11.432 | 13.152 |
| 1.0 | 0.001 | Liew | 0.352 | 0.862 | 2.157 | 2.756 | 3.136 | 5.490 | 6.206 | 6.499 |
|  |  | Present | 0.3515 | 0.8621 | 2.1566 | 2.7558 | 3.1371 | 5.4911 | 6.2072 | 6.4990 |
|  | 0.050 | Liew | 0.350 | 0.844 | 2.121 | 2.698 | 3.039 | 5.246 | 5.989 | 6.270 |
|  |  | Present | 0.3504 | 0.8449 | 2.1220 | 2.7008 | 3.0428 | 5.2571 | 5.9907 | 6.2739 |
|  | 0.100 | Liew | 0.348 | 0.816 | 2.034 | 2.582 | 2.860 | 4.811 | 5.477 | 5.772 |
|  |  | Present | 0.3476 | 0.8165 | 2.0346 | 2.5828 | 2.8602 | 4.8130 | 5.4775 | 5.7724 |
| 1.5 | 0.001 | Liew | 0.155 | 0.525 | 0.967 | 1.771 | 2.411 | 2.775 | 3.612 | 3.842 |
|  |  | Present | 0.1553 | 0.5250 | 0.9668 | 1.7715 | 2.4110 | 2.7752 | 3.6132 | 3.8424 |
|  | 0.050 | Liew | 0.155 | 0.515 | 0.959 | 1.730 | 2.374 | 2.728 | 3.506 | 3.718 |
|  |  | Present | 0.1552 | 0.5158 | 0.9594 | 1.7332 | 2.3754 | 2.7291 | 3.5122 | 3.7260 |
|  | 0.100 | Liew | 0.154 | 0.501 | 0.940 | 1.662 | 2.292 | 2.612 | 3.298 | 3.494 |
|  |  | Present | 0.1545 | 0.5015 | 0.9404 | 1.6626 | 2.2920 | 2.6127 | 3.3002 | 3.4961 |

Table 3
Comparison of $\lambda\left(\omega a^{2} \sqrt{\rho t / D}\right)$ for thin plates with $a / b=1.0$ [17]

| $t / b$ | K | Method | No. of vibration mode |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 0.01 | $0^{\circ}$ | Tsuiji | 3.4717 | 8.5089 | 21.290 | 27.199 | 30.964 | 54.197 | 61.263 | 64.143 | 70.985 | 92.933 |
|  |  | Present | 3.4708 | 8.4976 | 21.273 | 27.173 | 30.911 | 54.077 | 61.169 | 64.039 | 70.830 | 92.668 |
|  | $30^{\circ}$ | Tsuiji | 3.4139 | 19.168 | 49.410 | 50.100 | 57.850 | 75.905 | 94.272 | 105.81 | 111.15 | 114.78 |
|  |  | Present | 3.4130 | 19.154 | 49.379 | 50.068 | 57.766 | 75.820 | 94.194 | 105.65 | 110.96 | 114.47 |
|  | $60^{\circ}$ | Tsuiji | 3.2454 | 14.637 | 48.767 | 65.926 | 73.319 | 101.40 | 108.09 | 139.17 | 144.55 | 146.94 |
|  |  | Present | 3.2446 | 14.626 | 48.697 | 65.877 | 73.265 | 101.14 | 107.96 | 138.99 | 144.30 | 146.70 |
| 0.05 | $0^{\circ}$ | Tsuiji | 3.4722 | 8.5100 | 21.292 | 27.200 | 30.968 | 43.519 | 54.201 | 61.284 | 64.159 | 71.014 |
|  |  | Present | 3.4587 | 8.3388 | 20.943 | 26.655 | 30.031 | 43.512 | 51.885 | 59.126 | 61.921 | 67.905 |
|  | $30^{\circ}$ | Tsuiji | 3.4045 | 14.440 | 18.749 | 27.213 | 34.871 | 46.426 | 56.321 | 60.802 | 63.935 | 70.763 |
|  |  | Present | 3.3915 | 14.329 | 18.464 | 26.735 | 34.085 | 46.007 | 54.282 | 59.110 | 61.807 | 67.945 |
|  | $60^{\circ}$ | Tsuiji | 3.2302 | 14.279 | 21.832 | 28.056 | 41.036 | 45.746 | 55.604 | 63.320 | 67.481 | 69.415 |
|  |  | Present | 3.2182 | 14.069 | 21.723 | 27.676 | 40.383 | 44.638 | 54.381 | 61.452 | 66.325 | 67.198 |

are shown in Table 2. Regardless of the aspect ratio and the thickness ratio of the plates, the present first eight $\lambda$ are in very close agreement with those given by the reference, which demonstrates the accuracy of the present method and the suitability of the terms ( $N_{1}, N_{2}$ ) utilized in the present method although the un-twisted plates are analyzed. It should be noted that only the transverse vibration of plate was studied in the reference and both the transverse and the inplane vibration of twisted plates are included in this paper. Therefore, the frequency parameters in the table are a part of the results which correspond to the transverse vibration by the present method.

Secondly, the cantilever twisted thin plates with three twist angles $K=0^{\circ}, 30^{\circ}$ and $60^{\circ}$, two thickness ratios $t / b=0.05$ and 0.01 , and an aspect ratio $a / b=1.0$ [17] are considered. The method in the reference is based on the classical thin shell theory. The numerical results are given in Table 3. It is observed that the present results are smaller than those in the reference for the plates with different combinations of $K$ and $t / b$, because the stiffness of plates decreases when transverse shear deformation is included. The first 10 frequency parameters obtained by the two different methods show good agreement in the case of $t / b=0.01$ with a maximum difference less than $0.3 \%$. Deviations appear in the case of $t / b=0.05$ but the maximum one is less than $5 \%$, which is brought by transverse shear deformation and rotary inertia due to an increase in thickness. It is verified that the method on the thin shell theory [17] is adequate to the thin twisted plates and has a good accuracy. A recommendation that the influence of the transverse shear deformation may not be neglected when a thickness ratio $t / b$ of a cantilever twisted plate is greater than 0.05 should be considered.

## 4. Numerical analysis of vibration characteristics

The vibration of various cantilever plates with different twist angles, aspect ratios and thickness ratios is studied in this section. The frequency parameters and the mode shapes of vibration are presented so as to reveal the vibration characteristics and the influence of the parameters. For the given aspect ratios $a / b=0.5,1.0$ and 2.0 , and the combinations of the twist angle $K$ and the thickness ratio $t / b$, the vibration frequency parameters and some of their mode shapes of plates are obtained by the present numerical analysis.

In Table 4, all the frequency parameters show a downward trend as the thickness ratio $t / b$ increases, and the variations of the frequency parameters for higher modes are much greater than those of the lower ones for the plates with a given twist angle, which becomes large as $K$ increases. It is observed that the first $\lambda$ shows monotonic decrease with the twist angle $K$ increasing for all cases of $t / b$. However, there are no simple variations found for the other frequency parameters. The first ten mode shapes of vibration corresponding to nine cases of the plates given by Table 4 are plotted in Fig. 2 (the heavier lines are the nodal lines whose displacement $W$ is zero) where the changes in the mode shapes with the parameters $K$ and $t / b$ are shown. The first vibration modes of all the plates are the first bending mode. The phenomenon implies that an increase in the twist

Table 4
Frequency parameters $\lambda\left(\omega a^{2} \sqrt{\rho t / D}\right)$ of plates with $a / b=0.5$

| K | $t / b$ | No. of vibration mode |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $0^{\circ}$ | 0.0125 | 3.4905 | 5.3344 | 10.144 | 18.992 | 21.757 | 24.539 | 31.204 | 33.892 | 42.690 | 52.628 |
|  | 0.025 | 3.4833 | 5.2955 | 10.046 | 18.770 | 21.511 | 24.189 | 30.616 | 33.386 | 41.676 | 51.578 |
|  | 0.05 | 3.4579 | 5.1924 | 9.7579 | 18.090 | 20.623 | 23.052 | 27.030 | 28.851 | 31.729 | 38.710 |
|  | 0.10 | 3.3688 | 4.9146 | 8.9953 | 13.515 | 16.256 | 17.965 | 19.924 | 24.441 | 25.121 | 27.398 |
| $15^{\circ}$ | 0.0125 | 3.4171 | 14.117 | 17.662 | 20.711 | 23.172 | 31.466 | 34.766 | 38.766 | 48.351 | 53.913 |
|  | 0.025 | 3.4093 | 8.8916 | 12.383 | 19.776 | 20.356 | 25.314 | 31.263 | 34.150 | 42.654 | 51.598 |
|  | 0.05 | 3.3843 | 6.2629 | 10.253 | 18.140 | 19.153 | 22.741 | 27.177 | 29.400 | 31.635 | 38.508 |
|  | 0.10 | 3.2979 | 5.1148 | 8.9949 | 12.968 | 16.090 | 17.983 | 19.424 | 24.155 | 24.572 | 27.143 |
| $30^{\circ}$ | 0.0125 | 3.2134 | 17.981 | 20.215 | 25.043 | 28.489 | 41.343 | 44.204 | 48.484 | 52.679 | 56.821 |
|  | 0.025 | 3.2058 | 12.591 | 16.023 | 17.642 | 21.295 | 28.489 | 32.351 | 36.012 | 44.934 | 49.220 |
|  | 0.05 | 3.1828 | 7.9446 | 11.212 | 16.343 | 18.044 | 22.130 | 26.199 | 30.747 | 31.660 | 38.001 |
|  | 0.10 | 3.1039 | 5.4957 | 8.9304 | 11.742 | 15.556 | 17.589 | 18.221 | 23.094 | 23.521 | 26.479 |
| $45^{\circ}$ | 0.0125 | 2.9329 | 14.935 | 22.643 | 27.366 | 30.975 | 44.117 | 48.786 | 52.185 | 55.068 | 55.232 |
|  | 0.025 | 2.9252 | 14.073 | 14.589 | 18.032 | 21.646 | 32.056 | 33.012 | 37.540 | 42.844 | 44.735 |
|  | 0.05 | 2.9040 | 8.8873 | 11.827 | 13.578 | 17.215 | 21.955 | 24.548 | 30.599 | 32.461 | 37.061 |
|  | 0.10 | 2.8344 | 5.7448 | 8.6431 | 10.425 | 14.468 | 16.482 | 17.043 | 21.117 | 22.698 | 25.579 |
| $60^{\circ}$ | 0.0125 | 2.6312 | 12.166 | 22.694 | 27.166 | 31.181 | 37.746 | 49.825 | 49.885 | 56.533 | 58.903 |
|  | 0.025 | 2.6234 | 11.870 | 14.189 | 18.333 | 20.989 | 32.055 | 34.347 | 36.486 | 38.790 | 39.222 |
|  | 0.05 | 2.6038 | 9.0693 | 10.866 | 12.212 | 15.766 | 22.176 | 22.739 | 30.062 | 31.075 | 33.452 |
|  | 0.10 | 2.5428 | 5.7728 | 7.9511 | 9.3864 | 12.899 | 15.067 | 16.227 | 19.113 | 21.597 | 24.316 |



Fig. 2. Vibration mode shapes of plates $(a / b=0.5)$.
angle leads to a reduction in the bending stiffness. It is apparent that the change in mode shapes for the un-twisted plates is different from that for the twisted plates as the thickness ratio varies. In the case of $K=0^{\circ}$, there are no in-plane vibration modes in the first ten ones for the thin plate $(t / b=0.025)$ and the different modes appear in order. As the thickness increases, in-plane modes appear which insert into the original sequence of mode shapes of the thin plate. The greater the

Table 5
Frequency parameters $\lambda\left(\omega a^{2} \sqrt{\rho t / D}\right)$ of plates with $a / b=1.0$

| $K$ | $t / b$ | No. of vibration mode |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $0^{\circ}$ | 0.0125 | 3.4704 | 8.4917 | 21.264 | 27.158 | 30.882 | 54.010 | 61.115 | 63.981 | 70.745 | 92.518 |
|  | 0.025 | 3.4675 | 8.4511 | 21.194 | 27.043 | 30.675 | 53.506 | 60.692 | 63.522 | 70.099 | 87.024 |
|  | 0.05 | 3.4587 | 8.3388 | 20.943 | 26.655 | 30.031 | 43.512 | 51.885 | 59.126 | 61.921 | 67.905 |
|  | 0.10 | 3.4305 | 8.0585 | 20.081 | 21.756 | 25.491 | 28.229 | 47.503 | 52.202 | 54.060 | 56.971 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $15^{\circ}$ | 0.0125 | 3.4568 | 20.855 | 25.408 | 32.542 | 47.385 | 59.891 | 67.893 | 68.103 | 80.496 | 102.94 |
|  | 0.025 | 3.4512 | 14.898 | 20.652 | 28.195 | 35.754 | 56.872 | 59.465 | 64.327 | 72.157 | 89.870 |
|  | 0.05 | 3.4414 | 10.313 | 20.267 | 26.578 | 31.199 | 44.412 | 52.775 | 58.811 | 61.891 | 67.934 |
|  | 0.10 | 3.4130 | 8.5465 | 18.545 | 22.720 | 26.013 | 28.343 | 47.516 | 51.974 | 52.704 | 56.713 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $30^{\circ}$ | 0.0125 | 3.4109 | 19.127 | 42.477 | 43.466 | 57.368 | 67.128 | 82.375 | 92.294 | 99.260 | 113.59 |
|  | 0.025 | 3.4032 | 18.960 | 24.546 | 31.283 | 45.737 | 56.414 | 64.935 | 66.680 | 77.276 | 96.020 |
|  | 0.05 | 3.3915 | 14.329 | 18.464 | 26.735 | 34.085 | 46.007 | 54.282 | 59.110 | 61.807 | 67.945 |
|  | 0.10 | 3.3625 | 9.7555 | 16.389 | 23.227 | 27.435 | 28.635 | 47.527 | 50.135 | 51.297 | 55.941 |
| $45^{\circ}$ | 0.0125 | 3.3364 | 16.850 | 51.200 | 52.430 | 56.471 | 81.226 | 102.17 | 106.00 | 114.28 | 116.38 |
|  | 0.025 | 3.3279 | 16.710 | 32.426 | 34.967 | 52.750 | 54.547 | 70.659 | 73.421 | 82.901 | 99.856 |
|  | 0.05 | 3.3145 | 16.223 | 18.381 | 27.201 | 37.464 | 46.412 | 54.253 | 61.670 | 62.298 | 67.754 |
|  | 0.10 | 3.2845 | 11.217 | 14.361 | 23.173 | 28.927 | 28.980 | 46.864 | 47.925 | 50.189 | 54.661 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $60^{\circ}$ | 0.0125 | 3.2446 | 14.626 | 48.697 | 65.877 | 73.265 | 101.14 | 107.96 | 138.99 | 144.30 | 146.70 |
|  | 0.025 | 3.2332 | 14.488 | 37.702 | 38.033 | 48.910 | 60.622 | 75.718 | 79.619 | 87.274 | 97.788 |
|  | 0.05 | 3.2182 | 14.069 | 21.723 | 27.676 | 40.383 | 44.638 | 54.381 | 61.452 | 66.325 | 67.198 |
|  | 0.10 | 3.1870 | 12.563 | 12.591 | 22.860 | 29.249 | 29.879 | 44.115 | 47.710 | 48.687 | 52.885 |

thickness is, the easier the in-plane modes occur. For example, the seventh mode $(\lambda=27.030)$ is an in-plane one in the case of $t / b=0.05$, and the fourth $(\lambda=13.515)$ and ninth $(\lambda=25.121)$ modes are in-plane ones in the case of $t / b=0.10$. Incorporating Table 4 , it is found that the appearance of in-plane modes makes its frequency parameters change greatly. For instance, the variations of the eighth, ninth and tenth frequency parameters are greater than those of the others in the case of $t / b=0.05$; the same can be seen in the case of $t / b=0.10$. From the investigation of the untwisted plates with $a / b=0.5$, it is known that an increase in transverse shear deformation has little influence on mode shapes. For the plates with $K=30^{\circ}$ and $60^{\circ}$, although in-plane modes are not found, the changes in mode shapes can be observed as the thickness ratio varies in Fig. 2 where the mode shapes change and switch with each other as well as new modes appear. In other words, the effects of the transverse shear deformation on mode shapes show differences for different modes and different twist angles of cantilever plates. For example, there are no changes in the first, third and fifth mode shapes, the second mode becomes the first torsional one, some switch with each other, and the others show the complicated changes in the case of $K=30^{\circ}$ as the thickness ratio increases. In the case of $K=60^{\circ}$, except for small changes in the first and fifth modes, large changes occur in the others. It is known that the effect of the transverse shear


Fig. 3. Vibration mode shapes of plates $(a / b=1.0)$.
deformation on mode shapes is influenced by the twist angle. Also, it can be observed in Fig. 2 that the mode shapes vary with the twist angle.

The cantilever square plates are investigated, and the frequency parameters and some mode shapes of vibration are given in Table 5 and Fig. 3, respectively. Comparing with the results in Table 4, it is found that most of the frequency parameters are greater, especially for the higher frequency parameters of highly twisted thin plates, which means that the global stiffness of the plate $(a / b=1.0)$ is greater than that of the plate $(a / b=0.5)$. For an example of the tenth frequency parameters of the plates, the differences are $75.80 \%$ and $149.05 \%$ in the cases of $K=0^{\circ}$ and $60^{\circ}$. From the mode shapes of the un-twisted plates in Fig. 3, there are no changes in mode shapes except that the in-plane modes appear with the thickness ratio. In the case of $K=30^{\circ}$, it is obvious that mode shapes switch with each other such as the second bending and first torsional modes while $t / b$ varies from 0.025 to 0.05 , the eighth mode becomes ninth one and then tenth one with $t / b$ from 0.025 to 0.05 then to 0.10 , although this is accompanied by a little distortion. In the case of $K=60^{\circ}$, there are complex changes in mode shapes with $t / b$. As to the influence of the twist angle on mode shapes, it is observed that the main representation is an exchange of mode shapes as $K$ is small, and an exchange accompanying with distortion as $K$ is

Table 6
Frequency parameters $\lambda\left(\omega a^{2} \sqrt{\rho t / D}\right)$ of plates with $a / b=2.0$

| K | $t / b$ | No. of vibration mode |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $0^{\circ}$ | 0.0125 | 3.4396 | 14.779 | 21.430 | 48.103 | 60.117 | 92.369 | 93.025 | 118.48 | 126.76 | 152.69 |
|  | 0.025 | 3.4378 | 14.717 | 21.409 | 47.896 | 59.995 | 91.933 | 92.793 | 114.93 | 118.03 | 126.14 |
|  | 0.05 | 3.4335 | 14.555 | 21.337 | 47.300 | 57.462 | 59.557 | 90.545 | 91.953 | 116.40 | 124.07 |
|  | 0.10 | 3.4224 | 14.185 | 21.088 | 28.731 | 45.751 | 58.008 | 86.505 | 89.106 | 104.27 | 109.59 |
| $15^{\circ}$ | 0.0125 | 3.4402 | 20.825 | 31.526 | 59.406 | 83.293 | 94.573 | 118.00 | 124.86 | 136.70 | 176.48 |
|  | 0.025 | 3.4361 | 20.323 | 20.776 | 58.917 | 59.133 | 92.558 | 101.12 | 112.26 | 123.72 | 130.07 |
|  | 0.05 | 3.4312 | 16.131 | 20.644 | 50.218 | 56.197 | 61.917 | 92.048 | 92.764 | 116.18 | 124.46 |
|  | 0.10 | 3.4198 | 14.571 | 20.010 | 30.099 | 46.420 | 57.513 | 86.906 | 88.989 | 104.15 | 107.97 |
| $30^{\circ}$ | 0.0125 | 3.4389 | 19.258 | 56.270 | 57.429 | 98.911 | 115.54 | 136.61 | 162.32 | 182.31 | 195.17 |
|  | 0.025 | 3.4310 | 19.170 | 31.196 | 56.949 | 82.390 | 92.477 | 110.55 | 123.35 | 129.97 | 143.71 |
|  | 0.05 | 3.4243 | 18.944 | 20.002 | 54.317 | 57.863 | 66.460 | 92.342 | 98.917 | 115.45 | 125.78 |
|  | 0.10 | 3.4123 | 15.642 | 17.951 | 32.938 | 48.322 | 56.193 | 88.066 | 88.638 | 103.81 | 106.01 |
| $45^{\circ}$ | 0.0125 | 3.4335 | 17.267 | 54.675 | 80.257 | 105.45 | 111.98 | 182.31 | 191.66 | 195.44 | 231.86 |
|  | 0.025 | 3.4226 | 17.163 | 42.917 | 54.102 | 93.103 | 108.05 | 108.37 | 138.67 | 150.04 | 161.20 |
|  | $0.05$ | 3.4137 | 16.902 | 24.878 | 52.018 | 68.095 | 71.673 | 92.828 | 107.79 | 114.36 | 128.15 |
|  | 0.10 | 3.4007 | 15.889 | 17.197 | 35.981 | 51.191 | 54.479 | 88.052 | 89.861 | 103.24 | 103.90 |
| $60^{\circ}$ | 0.0125 | 3.4244 | 15.286 | 51.557 | 101.99 | 107.76 | 113.39 | 189.66 | 217.57 | 226.24 | 258.15 |
|  | 0.025 | 3.4115 | 15.187 | 50.976 | 54.302 | 94.328 | 105.20 | 131.92 | 149.27 | 175.75 | 175.77 |
|  | 0.05 | 3.4003 | 14.941 | 30.008 | 49.340 | 76.258 | 79.187 | 93.283 | 113.60 | 118.03 | 131.48 |
|  | 0.10 | 3.3859 | 14.062 | 19.025 | 38.448 | 53.015 | 54.692 | 87.226 | 92.117 | 101.50 | 102.45 |

large for the thin plate. The mode shapes of the thick plates switch with each other when $K$ is large. The first torsional and second bending modes switch with each other as $K$ varies from $0^{\circ}$ to $30^{\circ}$ for the plate $(t / b=0.025)$, and as $K$ varies from $30^{\circ}$ to $60^{\circ}$ for the plate $(t / b=0.05,0.10)$, for instance.

Table 6 and Fig. 4 provide the results of the long cantilever plates with $a / b=2.0$. Most of the frequency parameters are larger than those in Tables 4 and 5 and an exchange of mode shapes is the main manifestation caused by the thickness ratio and the twist angle. The bending and torsional modes appear one by one and in-plane mode shapes insert into the mode sequence with $t / b$ increasing for the un-twisted plate, but the situation changes after the plate is subjected to twist and the bending modes in $x$ direction occur easily. It is obvious that the mode shapes switch with each other and change their positions with $t / b$ increasing for the twisted plates, and a torsional mode is advanced comparing with the same order of a bending mode, which means that the effect of the thickness ratio on the torsional vibration is larger than that on the bending vibration. The changes in the third bending and third torsional modes of the plate $\left(K=60^{\circ}\right)$ is an example. From the changes in the mode shapes with the twist angle, it is known that the bending modes are advanced and the torsional modes are delayed with $K$ increasing, which is more


Fig. 4. Vibration mode shapes of plates $(a / b=2.0)$.
apparent for the thin plates $(t / b=0.025)$. The frequency parameters of the first third bending modes show a decrease but those of the first third torsional modes show an increase as the twist angle increases.

## 5. Conclusions

An equation of equilibrium for free vibration of a twisted plate is formulated by the principle of virtual work, where a strain-displacement relationship of a twisted plate is derived by Green strain tensor on general shell theory and the first order shear deformation theory. The governing equation is obtained by the Rayleigh-Ritz method with three linear and two angular displacement functions defined by sets of orthonormal polynomials which are generated by the Gram-Schmidt process. A cantilever twisted plate is chosen as an example of numerical analysis. Comparing with the previous results by the methods based on the classical thin shell theory and the Mindlin plate theory, a very good agreement reveals the accuracy and practicability of the present method, and it is also demonstrated that the present method is applicable to thin and Mindlin twisted plates. The frequency parameters and mode shapes of cantilever plates with various twist angles, aspect ratios and thickness ratios are achieved by the present method.

It is known that an increase in the thickness or the transverse shear deformation makes frequency parameters of bending and torsional vibrations to decrease for the plates, which there are no such effects on mode shapes of the un-twisted plates. There are different effects related to twist angles and types of modes for the twisted plates. The greater the aspect ratio is, the greater the frequency parameters are, but the variations of the lower frequency parameters are small and those of the higher ones are large. However, the torsional frequency parameters increase and the bending ones decrease with an increase in the twist angle.

## Acknowledgements

The manuscript of this paper was completed when the first author (X. X. HU) was at Nagasaki University, Japan, as a foreign researcher. The support provided by the Japan Society for the Promotion of Science is greatly appreciated.

## Appendix A

$\mathscr{G}^{(1)}$ and $\mathscr{G}^{(2)}$ are $10 \times 9$ and $10 \times 6$ dimensional matrices, and their non-zero elements are defined as

$$
\begin{gathered}
\mathscr{G}_{1,1}^{(1)}=\sqrt{g}, \quad \mathscr{G}_{1,6}^{(1)}=\frac{K^{2} Y}{\sqrt{g}}, \quad \mathscr{G}_{2,2}^{(1)}=\frac{a}{b} K, \quad \mathscr{G}_{2,3}^{(1)}=\frac{b}{a} \frac{K^{3} Y}{\sqrt{g}}, \quad \mathscr{G}_{2,9}^{(1)}=-\frac{K^{2}}{g \sqrt{g}}, \quad \mathscr{G}_{3,5}^{(1)}=\frac{a}{b} \sqrt{g}, \\
\mathscr{G}_{4,3}^{(1)}=-\frac{K^{3} Y}{g}, \mathscr{G}_{4,4}^{(1)}=\frac{K}{g}, \quad \mathscr{G}_{4,9}^{(1)}=-\frac{K^{2}}{g \sqrt{g}}, \quad \mathscr{G}_{5,2}^{(1)}=\frac{a}{b} g, \quad \mathscr{G}_{5,3}^{(1)}=-K^{2} Y\left(\frac{b}{a}-1\right), \\
\mathscr{G}_{5,4}^{(1)}=1.0, \quad \mathscr{G}_{5,9}^{(1)}=-\frac{2 K}{\sqrt{g}}, \quad \mathscr{G}_{6,1}^{(1)}=\frac{K}{\sqrt{g}}, \quad \mathscr{G}_{6,5}^{(1)}=\frac{a}{b} \frac{K}{\sqrt{g}}, \quad \mathscr{G}_{6,6}^{(1)}=\frac{K^{3} Y}{g \sqrt{g}}, \quad \mathscr{G}_{7,3}^{(1)}=K, \quad \mathscr{G}_{7,8}^{(1)}=\frac{a}{b} \sqrt{g},
\end{gathered}
$$

$$
\begin{gather*}
\mathscr{G}_{8,6}^{(1)}=\frac{K^{2}}{g \sqrt{g}}, \quad \mathscr{G}_{8,7}^{(1)}=\frac{K}{g}, \quad \mathscr{G}_{9,6}^{(1)}=\frac{K}{\sqrt{g}}, \quad \mathscr{G}_{9,7}^{(1)}=1.0, \quad \mathscr{G}_{10,3}^{(1)}=\frac{K^{2}}{g}, \quad \mathscr{G}_{10,8}^{(1)}=\frac{a}{b} \frac{K}{\sqrt{g}}, \\
\mathscr{G}_{7,6}^{(2)}=\sqrt{g}, \quad \mathscr{G}_{8,3}^{(2)}=K, \quad \mathscr{G}_{9,3}^{(2)}=g, \quad \mathscr{G}_{10,6}^{(2)}=\frac{K}{\sqrt{g}}, \tag{A.1}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathscr{G}_{i, j}^{(2)}=\mathscr{G}_{i, j}^{(1)} \quad(i=1-6, j=1-6) . \tag{A.2}
\end{equation*}
$$

## References

[1] A.W. Leissa, Vibration of Plates (NASA SP-160). Office of Technology Utilization, NASA, Washington DC, 1973.
[2] A.W. Leissa, Recent studies in plate vibration: 1981-1985 part I, classical theory, Shock and Vibration Digest 19 (2) (1987) 11-18.
[3] A.W. Leissa, Recent studies in plate vibration: 1981-1985 part II, complicating effects, Shock and Vibration Digest 19 (3) (1987) 10-24.
[4] M. Sathyamoorthy, Nonlinear vibration analysis of plates: a review and survey of current developments, Applied Mechanics Reviews 40 (11) (1987) 1553-1561.
[5] K.M. Liew, Y. Xiang, S. Kitipornchai, Research on thick plate vibration: a literature survey, Journal of Sound and Vibration 180 (1) (1995) 163-176.
[6] R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method, Journal of Sound and Vibration 102 (4) (1985) 492-499.
[7] B. Singh, S. Chakraverty, On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of transverse vibration of elliptic plates, Computers and Structures 43 (3) (1992) 439-443.
[8] B. Singh, S. Chakraverty, Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables, Journal of Sound and Vibration 173 (2) (1994) 157-178.
[9] S.M. Dickinson, A. Di-Blasio, On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of flexural vibration and buckling of isotropic and orthotropic rectangular plates, Journal of Sound and Vibration 108 (1) (1986) 51-62.
[10] K.M. Liew, K.Y. Lam, Application of two-dimensional orthogonal plate function to flexural vibration of skew plates, Journal of Sound and Vibration 139 (2) (1990) 241-252.
[11] K.M. Liew, C.M. Wang, pb-2 Rayleigh-Ritz method for general plate analysis, Engineering Structures 15 (1993) 55-60.
[12] K.M. Liew, K.C. Hung, K.M. Lim, Vibration of Mindlin plate using boundary characteristic orthogonal polynomials, Journal of Sound and Vibration 182 (1) (1995) 77-90.
[13] S. Chakraverty, R.B. Bhat, I. Stiharu, Recent research on vibration of structures using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method, Shock and Vibration Digest 31 (3) (1999) 187-194.
[14] J.C. Macbain, Vibratory behavior of twisted cantilevered plates, Journal of Aircraft 12 (4) (1975) 343-349.
[15] R. Kielb, A.W. Leissa, J.C. Macbain, Vibrations of twisted cantilevered plates-A comparison of theoretical results, International Journal for Numerical Methods in Engineering 21 (8) (1985) 1365-1380.
[16] T. Tsuiji, T. Sueoka, Free vibration of pre-twisted plates (fundamental theory), Transaction of the Japan Society of Mechanical Engineering 52(C) (484) (1986) 3042-3046 (in Japanese).
[17] T. Tsuiji, K. Kaneko, T. Sueoka, Free vibration of pre-twisted plates (numerical results by Rayleigh-Ritz method), Transaction of the Japan Society of Mechanical Engineering 53(C) (487) (1987) 605-611 (in Japanese).


[^0]:    *Corresponding author. Tel.: + 86-571-883-20-472; fax: $+86-571-883-20-130$.
    E-mail address: kokaka2sakura@hotmail.com (X.X. Hu).

